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Abstract. This paper describes an equivalence between certain discrete dynamical systems and
a class of iterations for the non-Hermitian eigenvalue problem. The identification of these discrete
iterations as approximate solutions of ordinary differential equations reveals important geometric
properties that, for example, provide insight into the role of orthogonality and bi-orthogonality. We
demonstrate that the continuous systems possess a quadratic invariant and describe the drift of this
conserved quantity under discretization; this invariant plays an important role in the convergence and
stability of the discrete iteration. We also investigate the effect of preconditioning on the convergence
and stability of the continuous system and its discretization.
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1. Introduction. Suppose we seek a small number of eigenvalues of the non-
Hermitian matrix A ∈ Cn×n, having at our disposal a nonsingular matrix N ∈ Cn×n

that will serve as a preconditioner for A. Over recent years there has been a growing
interest in the computation of eigenvalues via preconditioned inverse iteration. Given
a starting vector p0 ∈ Cn, compute

pj+1 = pj + N−1(θj −A)pj , (1.1)

where θj −A is shorthand for Iθj −A, and

θj =
(Apj ,pj)
(pj ,pj)

for some inner product (·, ·). See, for example, [14, 15] and the references therein
for the analysis of such iterations for Hermitian positive definite A. With the ideal
preconditioner N = A, this method reduces to (scaled) inverse iteration:

pj+1 = A−1pjθj .

Hence if N approximates A, at least with respect to some eigenspace, we might expect
that the sequence {pj} (with suitable normalization) converges to an eigenvector of
A. The method (1.1) is but one example of a broader class of methods, and one
objective of the present study is to develop a framework for the classification and
analysis of this family.

The iteration (1.1) can be viewed as the forward Euler discretization of the au-
tonomous nonlinear differential equation

ṗ = N−1
(
p

(Ap,p)
(p,p)

−Ap
)

(1.2)
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with a unit step size. The nonzero steady states of this system correspond to (right)
eigenvectors of A, and hence one might attempt to compute eigenvalues by driving this
differential equation to steady state as swiftly as possible. In this paper we examine
connections between simple eigenvalue iterations and related differential equations.

There exists a longstanding association of eigenvalue iterations with differential
equations [1, 6, 9, 12], with notable examples including Rayleigh quotient gradient
flow (see, e.g., [18]), connections between the QR algorithm for dense eigenproblems
and Toda flow [19, 28], and more general “isospectral flows” [31]. Although not devel-
oped as an algorithm for the algebraic eigenvalue problem, the Car–Parrinello method
[4] determines the Kohn–Sham eigenstates from a second order ordinary differential
equation, Newton’s equations of motion (see [24, p 1086] for a formulation using the
unpreconditioned (1.2)). The heavy ball optimization method [25] also formulates
the minimum of the Rayleigh quotient via a second order ordinary differential equa-
tion. The paper [3] computes the ground state solution of Bose–Einstein condensates
by using a normalized gradient flow discretized by several time integration schemes.
The Kohn–Sham eigenstates and Bose–Einstein condensates give rise to self-adjoint
nonlinear eigenvalue problems.

The differential equation (1.2) enjoys a distinguished property. Suppose that p
solves (1.2), N is self-adjoint and invertible, and θ = (p,p)−1(Ap,p). Then for all t,

d

dt
(p,Np) =

(
N−1(pθ −Ap),Np

)
+

(
p,NN−1(pθ −Ap)

)
= (pθ,p)− (Ap,p) + (p,pθ)− (p,Ap)
= 0. (1.3)

Thus (p,Np) is an invariant (or first integral), as its value is independent of time;
see [12, §1.3] for a discussion of the unpreconditioned case (N = I), and, e.g., [2, 11]
for a general introduction to invariant theory and geometric integration. When N = I,
we call (1.1) an orthogonal correction method.

The invariant describes a manifold in n-dimensional space, (p,Np) = (p0,Np0),
on which the solution to the differential equation with p(0) = p0 must fall. Simple
discretizations such as Euler’s method do not typically respect such invariants, and
thus solutions can drift from the manifold. Our goal is to explain the relationship
between convergence and stability for the continuous and discrete dynamical systems.
In particular, the quadratic invariant is a crucial property of the continuous system,
and it plays an important role in the convergence theory of the corresponding forward
Euler discretization.

These discretizations (equivalently, preconditioned iterations for large scale non-
Hermitian eigenvalue problems) are especially appealing in situations where a shift-
invert Arnoldi method is intractable due to the onerous cost of preconditioned iterative
methods used in inexact inner iterations; see [17, 30] for examples.

2. Dynamical systems and invariant manifolds. We are interested in gen-
eralizations of the simple preconditioned iteration that are appropriate for non-Her-
mitian matrix pencils, and properties of the dynamical systems from which such itera-
tions arise. In this section and the next we shall focus on unpreconditioned iterations,
N = I, before considering the influence of preconditioners in Section 5.

Let A,B ∈ Cn×n be matrices (with constant entries). For the generalized eigen-
value problem Ax = Bxλ with N = I, the preconditioned dynamical system (1.2)
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expands to

ṗ = Bpθ −Ap

for appropriate θ = θ(t). This system suggests a development from iterations for the
single vector p ∈ Cn to iterations for subspaces, RanP, where P ∈ Cn×k:

Ṗ = BPL−AP;

we shall address the choice of L ∈ Ck×k momentarily. (Quantities such as L are
t-dependent unless explicitly stated otherwise; we typically suppress the t argument
to simplify notation.)

For non-Hermitian problems one might simultaneously evolve an equation for the
adjoint to obtain approximations to the left eigenspace, which suggests the system

Ṗ = BPL−AP
Q̇ = B∗QM∗ −A∗Q,

(2.1)

with initial conditions P(0) = P0 and Q(0) = Q0, where P,Q ∈ Cn×k, and L,M ∈
Ck×k. Here ·∗ denotes the conjugate transpose and (·, ·) the standard Euclidean inner
product (though this analysis generalizes readily to arbitrary inner products). The
choice we make for the time-dependent L,M ∈ Ck×k can potentially couple P and
Q. At steady state,

BPL = AP, B∗QM∗ = A∗Q,

and hence, provided P and Q have full column rank, the eigenvalues of L and M are
included in the spectrum of the pencil A− λB, while the columns of P and Q span
right- and left-invariant subspaces of the same pencil. We shall motivate the choice
of the matrices L and M through generalizations of the invariant discussed in the
introduction.

The following notation facilitates the analysis of these subspace iterations.
Definition 2.1. Given P,Q ∈ Cn×k, define (P,Q) = Q∗P ∈ Ck×k, i.e., the

(i, j) entry of (P,Q) satisfies (P,Q)i,j := (Pej ,Qei), where e` denotes the `th column
of the k × k identity matrix.

In this notation, we have the homogeneity property (PL,Q) = Q∗PL = (P,Q)L.
Consider the pairs of (time-dependent) functions

(Q,P), (P,Q) (2.2)

and

(P,P), (Q,Q) (2.3)

with derivatives

d

dt
(Q,P) = (Q̇,P) + (Q, Ṗ),

d

dt
(P,Q) = (Ṗ,Q) + (P, Q̇),

and

d

dt
(P,P) = (Ṗ,P) + (P, Ṗ),

d

dt
(Q,Q) = (Q̇,Q) + (Q, Q̇).
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Inspired by (1.3), we next investigate how best to choose L and M to make either (2.2)
or (2.3) invariants of the dynamical system (2.1). In the process we shall see that the
pair (2.2) bears a close relationship to coupled “two-sided” iterations, while (2.3) will
correspond to “one-sided” iterations.

Theorem 2.2. For the system of ordinary differential equations (2.1) with initial
conditions P(0) = P0 ∈ Cn×k and Q(0) = Q0 ∈ Cn×k, the choices

L = (BP,Q)−1(AP,Q), M∗ = (Q,BP)−1(Q,AP).

give

d

dt
(P,Q) =

d

dt
(Q,P) = 0,

and hence (P,Q) = (P0,Q0) and (Q,P) = (Q0,P0) hold for all t.
Proof. Note that

d

dt
(P,Q) = (Ṗ,Q) + (P, Q̇)

= (BP,Q)L− (AP,Q) + M(P,B∗Q)− (P,A∗Q)( d

dt
(Q,P)

)∗
= (P, Q̇) + (Ṗ,Q)

= M(P,B∗Q)− (P,A∗Q) + (BP,Q)L− (AP,Q),

where we have used (2.1) and the homogeneity property. We can force (d/dt)(P,Q)
to zero by setting

L = (BP,Q)−1(AP,Q), M = (P,A∗Q)(P,B∗Q)−1,

as given in the theorem.
The next result is a direct analogue of Theorem 2.2 for the pair (2.3). We omit

the proof, a minor adaptation of the last one.
Theorem 2.3. For the system of ordinary differential equations (2.1) with initial

conditions P(0) = P0 ∈ Cn×k and Q(0) = Q0 ∈ Cn×k, the choices

L = (BP,P)−1(AP,P), M∗ = (Q,BQ)−1(Q,AQ)

give

d

dt
(P,P) =

d

dt
(Q,Q) = 0,

and hence (P,P) = (P0,P0) and (Q,Q) = (Q0,Q0) for all t.
With the choices for L and M given in Theorems 2.2 and 2.3, we refer to (2.1) as

the two-sided and one-sided dynamical systems.

3. Invariants and backward stability. What do we gain by remaining on the
manifold associated with the invariants? The short answer, as we shall see below, is
that at all times we can view our state vector as an exact steady-state of a related
system. Returning to the subspace setting, if Ṗ and Q̇ are small in norm, then that
related system can be nearby. Because Ṗ and Q̇ are residuals, discussions of nearby
systems are the domain of backward stability analysis. See [27] for a comprehensive
discussion.
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Let us assume the hypothesis of Theorem 2.3. For the one-sided iteration, we
rewrite the first part of (2.1) in the form

0 = BPL− (A + Ṗ(P,P)−1P∗)P

and thus the eigenvalues of L form a subset of the spectrum of the perturbed pencil
(A+Ṗ(P,P)−1P∗,B). How large can such perturbations be? If P = UΣV∗ ∈ Cn×k

is a singular value decomposition with smallest singular value σk, then

‖Ṗ(P,P)−1P∗‖ ≤ ‖Ṗ‖‖(P,P)−1P∗‖2 = ‖Ṗ‖σ−1
k .

We can thus interpret σ−1
k , which inherits time-invariance from (P,P), as a condition

number on the perturbation. Note that if (P,P) = Ik, then σk = 1 and, provided
‖Ṗ‖ is small, we have the steady-states of a nearby problem. For Hermitian A and
B = I, Theorem 11.10.1 of Parlett [22] states that the eigenvalue approximations
derived from a subspace have condition number σ−1

k , and so basis representation (i.e.,
departure from orthogonality) matters.

Now consider two-sided iterations, and so assume the hypothesis of Theorem 2.3.
We would like to rewrite (2.1) in the form

0 = BPL− (A + E)P
0 = B∗QM∗ − (A∗ + E∗)Q

for the same E in both iterations. If we suppose that N = I, Lemma 1 of [13] implies
that such a perturbation E exists if and only if

(BP,Q)L = M(BP,Q),

which holds for the choice of L and M given in Theorem 2.2. The perturbation E is
not unique, but EP = Ṗ and E∗Q = Q̇. Moreover, the “main theorem” of [13] gives

min ‖E‖2 = max{‖Ṗ‖2, ‖Q̇‖2}

if (P,P) = Ik and (Q,Q) = Ik. However, as the authors of [13] explain, a small
‖E‖2 is irrelevant unless ‖(P,Q)−1‖2 is also small. When k = 1, the discussion of
Section 4 explains that incurable breakdown occurs when P is orthogonal to Q, so
that min ‖E‖2 is undefined.

We caution the reader that backward stability alone does not provide information
on forward error, or accuracy, of the steady-states when A 6= A∗. The relevance of
backward stability is that the solution of the partitioned ordinary differential equations
at all time are steady-states for a related dynamical system. The distance to this
related dynamical system depends upon the norm of the residuals.

4. Convergence analysis. At least for single-vector iterations (i.e., k = 1),
the analysis of the one- and two-sided dynamical systems follows readily from the
remarkable fact that, in many cases, simple formulas give the exact solutions of these
nonlinear differential equations. This observation, inspired by a lemma of Nanda [19],
informs convergence analysis of the eigeniterations that result from the discretization
of these equations. Though expressed for the standard eigenvalue problem, these
results can naturally be adapted to the generalized case by replacing A with B−1A.

Theorem 4.1. Consider the partitioned set of ordinary differential equations

ṗ = pθ −Ap
q̇ = qθ̄ −A∗q,

(4.1)
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with p(0) = p0 and q(0) = q0, where p,q ∈ Cn, (p0,q0) 6= 0, and

θ =
(Ap,q)
(p,q)

.

Then there exists some tf > 0 such that for all t ∈ [0, tf),

p(t) = e−Atp0π(t), q(t) = e−A∗tq0π(t),

where

π(t) =

√
(p0,q0)

(e−Atp0, e−A∗tq0)
.

Proof. We define p(t) = e−Atp0π(t) and q(t) = e−A∗tq0π(t), and will show that
these formulas satisfy the system (4.1). Note that

π̇ =
π

2

(
(Ae−Atp0, e

−A∗tq0) + (e−Atp0,A∗e−A∗tq0)
)

(e−Atp0, e−A∗tq0)

= π
(Ae−Atp0, e

−A∗tq0)
(e−Atp0, e−A∗tq0)

= π
(Ae−Atp0π, e−A∗tq0π̄)
(e−Atp0π, e−A∗tq0π̄)

= π
(Ap,q)
(p,q)

= πθ.

Differentiating the formulas for p and q thus gives

ṗ = −Ae−Atp0π + e−Atp0π̇ = −Ap + θp

q̇ = −A∗e−A∗tq0π̄ + e−A∗tq0 ˙̄π = −A∗q + θ̄q,

as required. The hypothesis that (p0,q0) 6= 0 ensures the existence of the solution at
time t = 0. The formula will hold for all t > 0, until potentially

(e−Atp0, e
−A∗tq0) = 0. (4.2)

We define tf to be the smallest positive t for which (4.2) holds. If no such positive t
exists, the solution exists for all t > 0 and we can take tf = ∞ in the statement of the
theorem.

Theorem 4.1 gives (p,q) = (p0,q0), precisely as Theorem 2.2 indicates. Under
the conditions of Theorem 4.1, solutions of the two-sided single-vector equations (4.1)
have the same direction as solutions of the simpler linear systems ẋ = −Ax, x(0) = p0

and ẏ = −A∗y, y(0) = q0, but the magnitudes of p and q in (4.1) vary nonlinearly. In
particular, this magnitude can blow-up in finite time—a phenomenon we call incurable
breakdown—even with both p and q nonzero. Note that if(

e−Atp0√
(p0,q0)

,
e−A∗tq0√
(q0,p0)

)
= 0

then π(t) is undefined. This ratio will be nonzero but small in the vicinity of blow-up,
a situation that commonly occurs in discretizations of these equations. The salient
issue is that p and q are nearly orthogonal and so

(p,q)
‖p‖ ‖q‖

=
(

e−Atp0

‖e−Atp0‖
,

e−A∗tq0

‖e−A∗tq0‖

)
(4.3)
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is a useful quantity to measure. This number is small when the secant of the angle
between p and q is large. In Section 6 we shall see the important consequences of
these observations for eigensolvers derived from the discretization of (4.1).

One can avoid breakdown altogether by using starting vectors p0 and q0 that are
sufficiently accurate approximations to the right and left eigenvectors of A associated
with the leftmost eigenvalue. Suppose A is diagonalizable with a simple leftmost
eigenvalue λ1, and all other eigenvalues strictly to the right of λ1. Thus there exists
invertible X and diagonal Λ such that

A = XΛX−1

with Λ1,1 = λ1. Write λj = Λj,j , so that Re λj > Re λ1 for j = 2, . . . , n. Define
r = X−1p0 and s = X∗q0, i.e., r and s are the expansions of the starting vectors in
biorthogonal bases of right and left eigenvectors of A.

Theorem 4.2. Under the setting established in the last paragraph, the condition

|r1s1| >
n∑

j=2

|rjsj |

is sufficient to ensure that the dynamical system (4.1) has a solution for all t ≥ 0
given by Theorem 4.1, i.e., no incurable breakdown occurs.

Proof. First note that

(e−Atp0, e
−A∗tq0) = (Xe−ΛX−1p0,X−∗e−Λ∗X∗q0) = (e−2Λtr, s) =

n∑
j=1

rjsje
−2λjt.

Since Re λ1 < Re λj for j > 2, we have |e−2λ1t| ≥ |e−2λjt| for all t ≥ 0. The hypothesis
involving r and s thus implies, for t ≥ 0, that

|r1s1e
−2λ1t| ≥

n∑
j=2

|rjsje
−2λjt|.

Given this expression, we can twice apply the triangle inequality to conclude

0 < |r1s1e
−2λ1t| −

n∑
j=2

|rjsje
−2λjt|

≤ |r1s1e
−2λ1t| −

∣∣∣∣ n∑
j=2

rjsje
−2λjt

∣∣∣∣ ≤ ∣∣∣∣ n∑
j=1

rjsje
−2λjt

∣∣∣∣ = |(e−Atp0, e
−A∗tq0)|.

Hence π(t) in Theorem 4.1 is finite for all t ≥ 0, ensuring that the solution to the
dynamical system (4.1) does not blow up at finite time.

The single vector one-sided system possesses a similar exact solution, which has
been studied in the context of gradient flows associated with Rayleigh quotient iter-
ation. We shall see that finite-time blow-up is never a concern for such systems. The
following is a modest restatement of a result of Nanda [19, Lemma 1.4] (who considers
the differential equation acting on the unit ball in Rn).

Theorem 4.3. Consider the ordinary differential equation

ṗ = pθ −Ap, (4.4)



8 M. EMBREE AND R. B. LEHOUCQ

with A ∈ Rn×n and initial condition p(0) = p0 ∈ Rn, where p0 6= 0 and

θ =
(Ap,p)
(p,p)

.

Then for all t ≥ 0, equation (4.4) has the exact solution

p(t) = e−Atp0ω(t)

where

ω(t) =

√
(p0,p0)

(e−Atp0, e−Atp0)
.

We omit the proof of this result, which closely mimics that of Theorem 4.1. Of
course, a similar formula can be written for the one-sided equation for q(t). The re-
striction to real matrices guarantees that (Ae−Atp0, e

−Atp0) = (e−Atp0,Ae−Atp0);
the result also hold for complex Hermitian A.

As before, p has the same direction as the solution to the dynamical system
ẋ = −Ax with x(0) = p0, but the magnitude is scaled by the nonlinear scalar ω.
Provided p0 6= 0, the one-sided system (4.4) cannot blow up in finite time, since
(p,p) 6= 0, in stark contrast to the two-sided iteration. This collinearity implies that
the p vectors produced by the one- and two-sided systems provide equally accurate
approximations to the desired eigenvector, at least until the latter breaks down.

When A has a unique simple eigenvalue of smallest real part and the hypotheses
of Theorem 4.1 or 4.3 are met, the asymptotic analysis of the associated dynamical
system readily follows; cf. [12, §1.3] for a generic asymptotic linear stability analysis
of the one-sided iteration. In fact, one can develop explicit bounds on the sine of the
angle between p and the desired eigenvector x1, defined as

sin∠(p,x1) := min
α∈C

‖αp− x1‖
‖x1‖

.

Theorem 4.4. Suppose A can be diagonalized, A = XΛX−1, and the eigenvalues
of A can be ordered as

Real(λ1) < Real(λ2) ≤ · · · ≤ Real(λn).

Let x1 and y1 denote right and left eigenvectors associated with λ1, with ‖x1‖ = 1
and y∗1x1 = 1. Then the solution p(t) to both systems (4.1) and (4.4) satisfies

sin∠(p(t),x1) ≤ ‖X‖ ‖X−1‖ ‖p0‖
|y∗1p0|

eRe(λ1−λ2)t

for all t ≥ 0 in the case of (4.4), and for all t ∈ [0, tf ) in the case of (4.1).
Proof. Since x1 is a unit vector, we can write

sin∠(p(t),x1) = min
α∈C

‖αp(t)− x1‖.

In both (4.4) and (4.1), p(t) is collinear with e−Atp0, so we can proceed with

sin∠(p(t),x1) = min
α∈C

‖αXe−ΛtX−1p0 − x1‖

≤
∥∥∥ eλ1t

y∗1p0
Xe−ΛtX−1p0 − x1

∥∥∥ ≤ ‖X‖ ‖X−1‖ ‖p0‖
|y∗1p0|

eRe(λ1−λ2)t.
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The first inequality follows from choosing a (sub-optimal) value of α that cancels the
terms in the x1 direction. (For similar analysis of the Arnoldi eigenvalue iteration,
see [26, Prop. 2.1].)

An analogous bound could be developed for the convergence of q to the left
eigenvector y1. When A is far from normal, one typically observes a transient stage of
convergence that could be better described via analysis that avoids the diagonalization
of A; see, e.g.,[29, §28], which includes similar analysis for the power method.

The two-sided iteration converges to left and right eigenvectors of A associated
with the leftmost eigenvalue, provided the method does not breakdown on the way to
this limit. Several natural questions arise: How common is breakdown? How well
do discretizations mimic this dynamical system? Before investigating these issues in
Section 6, we first address how preconditioning can accelerate—and complicate—the
convergence of these continuous-time systems.

5. Preconditioned dynamical systems. What does it mean to precondition
the eigenvalue problem? Several different strategies have been proposed in the lit-
erature (see especially the discussion in [14, pp. 109–110]); here we shall investigate
analogous approaches for our continuous time dynamical systems, and the implications
such modifications have on the convergence behavior described in the last section.

One might first consider applying to the generalized eigenvalue problem

Ap = Bpλ,

left and right preconditioners M and N, so as to obtain the equivalent pencil

(M−1AN)(N−1p) = (M−1BN)(N−1p)λ. (5.1)

Provided B is invertible, one could then define

Â := (M−1BN)−1(M−1AN) = N−1B−1AN

p̂ := N−1p,

then apply the concepts from the preceding sections to the standard eigenvalue prob-
lem Âp̂ = p̂λ. For example, we could seek the leftmost eigenpair of Â by evolving
the dynamical system

˙̂p = p̂θ̂ − Âp̂,

with the (preconditioned) Rayleigh quotient

θ̂ =
(Âp̂, p̂)
(p̂, p̂)

=
(N−1B−1Ap,N−1p)

(N−1p,N−1p)
.

Note that Â and B−1A share the same spectrum since they are similar, and hence
the asymptotic rate in Theorem 4.4 is immune to the preconditioner. The application
of N could affect the system’s transient behavior, but M exerts no influence at all.1

Several choices for N are interesting. Taking N = A−1 gives Â = AB−1, an
alternative to the B−1A form suggested by the original problem. Similarity trans-
formations can also be used to balance a matrix to improve the conditioning of the

1Alternatively, by substituting (M−1BN)−1ep := N−1p in equation (5.1), we obtain a system

driven by eA = M−1AB−1M that is independent of N.
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eigenvalue problem [21, 23], in which case N is constructed as a diagonal matrix that
reduces the norm of Â. Such balancing tends to decrease the departure from nor-
mality associated with the largest magnitude eigenvalues. In fact, in the 1960 article
that introduced this idea, Osborne refers to this procedure as “pre-conditioning” [21].
A more extreme—if impractical—approach takes N to be a matrix that diagonal-
izes B−1A (provided such a matrix exists), a choice that minimizes the constant
‖X‖‖X−1‖ that describes the departure from normality in Theorem 4.4.

As useful as such improvements might be, these strategies fail to alter the asymp-
totic convergence rate described in Theorem 4.4. To potentially improve this rate,
one can apply the preconditioner N−1 directly to the residual pθ−Ap. Consider the
dynamical system

ṗ = N−1(pθ −Ap), (5.2)

where θ refers to the usual (unpreconditioned) Rayleigh quotient θ = (Ap,p)/(p,p).
Discretization of this system results in the familiar preconditioned eigensolver de-
scribed in (1.1). For this case, a generalization of Theorem 4.3 has proved elusive; we
have found no closed form for the exact solution. Indeed, as we shall next see, the
choice of preconditioner can even complicate the system’s local behavior.

Let x1 denote a unit eigenvector of A associated with the eigenvector λ1, which
we assume to be strictly to the left of the other eigenvalues of A. Note that x1 is a
steady-state of (5.2), linearizing about which gives the Jacobian

J = N−1(I− x1x
∗
1)(λ1 −A). (5.3)

As Jx1 = 0, the Jacobian J always has a zero eigenvalue, adding complexity to
conventional linear stability analysis. The challenge can be magnified by a poor
choice for N. For example, suppose

A =
[
1 0
0 2

]
, N = N−1 =

[
0 1
1 0

]
, x1 =

[
1
0

]
, λ1 = 1,

so that

J =
[
0 1
1 0

] [
0 0
0 1

] [
0 0
0 −1

]
=

[
0 −1
0 0

]
,

i.e., the Jacobian is a Jordan block with a double eigenvalue at zero.
To obtain a rough impression of the behavior of the continuous system when θ is

in the vicinity of λ1, consider the constant-coefficient equation ṗ = N−1(pλ1 −Ap),
whose solution obeys the simple formula

p(t) = eN−1(λ1−A)tp(0).

Hence the asymptotic behavior of p is controlled by the spectrum of N−1(λ1 −A).
Assuming that N−1(λ1 − A) has a simple zero eigenvalue, the convergence of this
system to the dominant eigenvector depends on the nonzero eigenvalues of N−1(λ1−
A): if this matrix has any other eigenvalues in the closed right half plane, the system
will not generically converge; if all nonzero eigenvalues are in the open left half plane,
then the convergence rate will be determined by the rightmost of them.

From the perspective of the convergence rate of the continuous dynamical system,
we seek a preconditioner N−1 such that the nonzero eigenvalues of N−1(λ1 −A) are
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as far to the left as possible. While the leftmost eigenvalues of N−1(λ1 −A) do not
much affect the behavior of the continuous system, they can have a significant effect
on the stability of the discretized difference equation, i.e., the related eigensolvers.
For example, if N−1(λ1 −A) moves all nonzero eigenvalues into the left half plane,
then replacing N by 1

2N doubles the convergence rate of the continuous system.
To rigorously analyze the local behavior of the fully nonlinear system when p

approximates the eigenvector x1, we shall apply the Center Manifold Theorem [5, 10],
a tool for studying a dynamical system whose Jacobian has an eigenvalue on the
imaginary axis. (Alternatively, we could restrict the system to the unit sphere in
Rn.) Without loss of generality, assume that λ1 = 0, so that the Jacobian at x1 (5.3)
takes the form J = −N−1(I− x1x

∗
1)A. Thus for p near x1 we have

ṗ = Jp + F(p)

for the nonlinear function F(p) = N−1(θ(p)p− (Ap,x1)x1) that, by definition of the
Jacobian, satisfies ‖F(p)‖ = o(‖p− x1‖).

Suppose that J has a simple zero eigenvalue, and the rest of its spectrum is in
the open left half plane. There exists some invertible (real, if J is real) matrix S with
first column x1 and

S−1JS =
[
0 0
0 C

]
for some C ∈ C(n−1)×(n−1) whose spectrum is in the open left half plane.

We now transform coordinates into a form in which the Center Manifold Theorem
can most readily be applied. Define

r(t) = S−1(p(t)− x1),

so that

ṙ = (S−1JS)S−1(p− x1) + S−1F(p) =
[
0 0
0 C

]
r + G(r),

where G(r) := S−1F(Sr + x1) = S−1F(p). By design, S−1x1 = e1, and hence G(r)
satisfies

G(r) = S−1N−1S
(( (ASr,Sr) + (ASr,x1)

(Sr,Sr) + 2(x1,Sr) + 1

)
(r + e1)− ((ASr,x1)e1

)
. (5.4)

Now we are prepared to cast this diagonalized problem into the conventional setting
for Center Manifold Theory. We write

r =
[
α
b

]
for α ∈ R and b ∈ Rn−1. Using MATLAB index notation for convenience, the r
system is simply [

α̇

ḃ

]
=

[
0 0
0 C

] [
α
b

]
+

[
G([α;b])1
G([α;b])2:n

]
that is

α̇ = G([α;b])1, ḃ = Cb + G([α;b])2:n.
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Notice that the component α only figures in the nonlinear terms; we wish to
determine how that contribution affects the magnitude of the b component—that
is, the portion of the solution that we hope decays as t → ∞. Notice that b = 0
corresponds to the case when p is collinear with x1. In this case p may differ from
the unit eigenvector x1, but regardless it is a fixed point of the dynamical system,
and provided p 6= 0 we are content. In particular, if b = 0, then ASr = 0 too (recall
that λ = 0), and we can see from (5.4) that G(r) = 0. In this case

α̇ = G([α;0])1 = 0, ḃ = C0 + G([α;0])2:n = 0,

so any such r is a fixed point of the dynamical system. We can put this in grander
language: there exists some δ > 0 such that if

r0 ∈
{ [

α
0

]
: |x| < δ

}
=: M,

then the dynamical system with r(0) = r0 satisfies r(t) ∈ M for all t > 0. (In
particular, r(t) = r(0) ∈ M.) The set M is called a local invariant manifold. We can
define this manifold (locally) by the requirement that

b = g(α) := 0,

which trivially satisfies g(0) = 0 and the Jacobian of g at α = 0 is Dg(0) = 0;
furthermore, g is arbitrarily smooth near α = 0. Together, these properties ensure
that M is a center manifold of the dynamical system. (We are fortunate in this case
to have an explicit, trivial expression for this manifold.)

All that remains is to apply Theorem 2 from Carr [5, p. 4]. Consider the equation

u̇ = G([u;g(u)])1 = G([u;0])1 = 0.

The solution u(t) = 0 is clearly stable—if u(t) = ε, then |u(t) − 0| = |ε| is bounded
for all t > 0—and thus Theorem 2(a) from [5] implies that the solution r(t) = 0 is a
stable solution of the system

ṙ =
[
0 0
0 C

]
r + G(r).

Note that the solution u(t) = 0 is not asymptotically stable, that is, we do not have
u(t) → 0 if u(0) = ε for small, nonzero ε. Were this the case, then we would be
able to conclude that the r system was asymptotically stable. This would contradict
our expectation that the original dynamical system will converge to something in
span{x1}, not necessarily to x1 itself. In particular, if N is self-adjoint, then (Np,p)
is an invariant of the system, and so we expect that p(t) → ξx1 for ξ determined by

|ξ|2 =
(Np,p)

(Nx1,x1)
.

We now have stability of the zero state of the r system, but that only means
that solutions sufficiently close to r = 0 do not diverge. To say more—to say that
the solutions actually converge to the center manifold—we can apply Theorem 2(b)
of [5], which we slightly paraphrase here. Since the zero solution of the r equation
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is stable, for ‖[α(0);b(0)]‖ sufficiently small, there exists some solution u(t) of the
equation u̇(t) = G([u;g(u)])1 = 0 and positive constant γ such that

α(t) = u(t) + O(e−γt), b(t) = g(u(t)) + O(e−γt).

In particular, in our setting such solutions u(t) will be constant: u(t) = c, and so
there exist

α(t) = c + O(e−γt), b(t) = O(e−γt),

and in particular ‖b(t)‖ → 0 as t →∞. Thus for ‖r0‖ sufficiently small,

r(t) =
[
c
0

]
+ O(e−γt),

so that p(t) = Sr(t) +x1 = (1 + c)x1 + O(e−γt). The preceding discussion is summa-
rized in the following result.

Theorem 5.1. If ‖p(0)−x1‖ is sufficiently small and N−1(I−x1x
∗
1)(λ−A) has

a simple zero eigenvalue with all other eigenvalues in the open left half plane, then
there exists γ > 0 and ξ ∈ R such that, as t →∞,

‖p(t)− ξx1‖ = O(e−γt).

In the case of self-adjoint, invertible N, |ξ| = |(p0,Np0)|.
Note that if N is Hermitian and invertible but indefinite, then there always exists

some unit vector p0 such that (p0,Np0) = 0. If this starting vector is sufficiently
close to the unit eigenvector x1 of A, then we have not ruled out the possibility that
the system converges to the zero vector, rather than a desired eigenvector.

6. Discrete dynamical systems. The previous sections have addressed the
quadratic invariant and convergence behavior of the continuous-time one- and two-
sided dynamical systems. For purposes of computation, one naturally wonders how
closely such properties are mimicked by the solutions to discretizations of these sys-
tems. The present section considers the convergence and preservation of the quadratic
invariant by the discrete flow under a forward Euler time integration.

6.1. Departure from the manifold. Given A ∈ Rn×n, for notational conve-
nience we rewrite the two-sided system in the form

ṗ = pθ −Ap =: f(p,q)
q̇ = qθ −AT q =: g(p,q), (6.1)

with θ = (qT p)−1qT Ap = θT and initial conditions p(0) = p0 ∈ Rn and q(0) = q0 ∈
Rn. Similarly, the one-sided system (now including preconditioning) is

ṗ = N−1(pθ −Ap) =: N−1f(p,p). (6.2)

with θ = (pT p)−1pT Ap = θT and p(0) = p0 ∈ Rn.
In Section 2 we showed that this system preserves the quadratic invariant qT p.

To what extent do discretizations respect such conservation, and what are the impli-
cations of any drift from this manifold?
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In order to understand the role of discrete quadratic invariants, we consider the
error when using a forward Euler time integrator on the one- and two-sided iterations.
The resulting discretization of (6.1) leads to the discrete dynamical system

pj+1 = pj + hfj (6.3)
qj+1 = qj + hgj , (6.4)

where fj := f(pj ,qj) and gj := g(pj ,qj). With the mild caveat that qT
j pj 6= 0, the

form of the Rayleigh quotient gives

qT
j fj = 0 = pT

j gj .

This simple observation is critical to understanding the drift of the forward Euler
iterates from the invariant manifold. It implies, for example, that the first iteration
of (6.3)–(6.4) produces a iterate that is quadratically close to the manifold:

qT
1 p1 = qT

0 p0 + h2(gT
0 f0),

which is perhaps surprising given the forward Euler method’s O(h) accuracy. Writing
the departure from the manifold as

dj = qT
j pj − qT

0 p0,

we thus have d1 = h2(gT
0 f0). From this we can compute

d2 = (qT
2 p2 − qT

1 p1) + d1 = h2(gT
1 f1 + gT

0 f0)

and, in general, dj+1 = h2
∑j

k=0 gT
k fk. (This result is a special case of one derived

in [11] for partitioned Runge–Kutta systems.) Thus we can bound the relative drift
from the manifold as

|qT
j+1pj+1 − qT

0 p0|
|qT

0 p0|
≤ h2

j∑
k=0

‖fk‖ ‖gk‖
|qT

0 p0|
. (6.5)

The definitions of f(p,q) and g(p,q) imply

‖fk‖ ≤ (|θk|+ ‖A‖) ‖pk‖ ≤
(

1 +
‖qk‖‖pk‖
|qT

k pk|

)
‖A‖‖pk‖

‖gk‖ ≤ (|θk|+ ‖A‖) ‖qk‖ ≤
(

1 +
‖pk‖‖qk‖
|pT

k qk|

)
‖A‖‖qk‖.

Substituting these formulas into (6.5), we arrive at the following result.
Theorem 6.1. The forward Euler iterates (6.3)–(6.4) for the two-sided dynamical

system (6.1) satisfy

|qT
j+1pj+1 − qT

0 p0|
|qT

0 p0|
≤ h2 ‖A‖2

|qT
0 p0|

j∑
k=0

(
1 +

‖qk‖‖pk‖
|qT

k pk|

)2

‖qk‖‖pk‖. (6.6)

This bound implies that the departure from the manifold is proportional to the
square of the step size, and involves the secants of the angles formed by qk and pk,
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k = 0, . . . , j, as well as the norms of qk and pk. Moreover, unless the cosines of
the angles between qk and pk are bounded away from zero, there does not exist a
step size h such that all iterates remain near the quadratic manifold. The proof of the
theorem demonstrates that the secant of the angle is at least as large as the normalized
residuals. Numerical experiments indicate that these bounds are descriptive.

A similar result holds for the one-sided dynamical system with precondition-
ing (6.2), with forward Euler discretization given by

pj+1 = pj + hN−1fj , (6.7)

where now fj = f(pj ,pj). Henceforth we assume that N is symmetric and invertible,
which, as seen in the introduction, ensures that solutions of the continuous system
reside on an invariant manifold pT Np = constant. At each time step, the discrete
iteration incurs a local departure from that manifold of

ej+1 := pT
j+1Npj+1 − pT

j Npj = h2fT
j N−1fj .

Hence if N−1 is additionally positive definite (e.g., N−1 = I), the drift is monotone
increasing—an important property for the forthcoming convergence theory.

When N is positive definite, we can define vector norms

‖z‖2N−1 := zT N−1z, ‖z‖2N := zT Nz

(which in turn induce matrix norms), with ‖z‖N−1 ≤ ‖N−1‖‖z‖N. Thus we write

ej+1 = h2‖fj‖2N−1 ≤ h2‖N−1‖2‖fj‖2N = h2‖N−1‖2‖rj‖2N‖pj‖2N,

where we use the normalized residual rj := fj/‖pj‖N = (θj − A)pj/‖pj‖N. Now
consider the aggregate, global drift from the manifold:

dj+1 := pT
j+1Npj+1 − pT

0 Np0

=
j+1∑
k=1

ek ≤ h2‖N−1‖2
j∑

k=0

‖rk‖2N(dk + ‖p0‖2N).

In particular, dj+1 is determined by the step size, the residual norms, and the growth
in the norm of the iterates. For further simplification, choose some M > 0 such that
‖rk‖2N ≤ M for all k = 0, . . . , j. One coarse (but j-independent) possibility is

M := inf
s∈R

4‖A− s‖2N ≥ inf
s∈R

‖(A− s)− (θk − s)‖2N ≥ ‖rk‖2N, (6.8)

which is invariant to shifts in A. (In terms of the Euclidean norm, we thus have
M ≤ 4κ(N) infs∈R ‖A− s‖2, where κ(N) = ‖N‖‖N−1‖.) Hence

dj+1 ≤ h2M‖N−1‖2
j∑

k=0

(dk + ‖p0‖N)2 = h2M‖N−1‖2
(
(j + 1)‖p0‖2N +

j∑
k=1

dk

)
(since d0 = 0). Thus if we define the sequence {d̂k} by

d̂j+1 = h2M‖N−1‖2
(
(j + 1) +

j∑
k=1

d̂k

)
, (6.9)
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then the departure from the manifold obeys dj+1 ≤ d̂j+1‖p0‖2N. Equation (6.9) is a
binomial recurrence whose solution can be written explicitly:

d̂j+1 =
j+1∑
k=1

(
j + 1

k

)
(h2M‖N−1‖2)k = (1 + h2M‖N−1‖2)j+1 − 1.

Theorem 6.2. Let N ∈ Rn×n be symmetric and positive definite, and define
M by (6.8). Then the forward Euler iterates (6.7) for the preconditioned one-sided
dynamical system (6.2) satisfy

0 ≤
pT

j+1Npj+1 − pT
0 Np0

pT
0 Np0

≤ (1 + h2M‖N−1‖2)j+1 − 1, (6.10)

the upper bound being asymptotic to (j + 1)h2‖N−1‖2M as h → 0.
Note that a small eigenvalue of N results in a small time-step h. The bound also

provides an estimate of a critical time step

h
√

j + 1 /
1

‖N−1‖
√

M

for forward Euler, limiting the departure from the quadratic manifold. Highly non-
normal problems for which ‖A− s‖ � maxk |λk − s| also result in tiny time-steps.

Theorem 6.2 is a striking result—independent of starting vectors, the drift in
the iterates for a one-sided iteration from the quadratic manifold is O(h2) and non-
decreasing in j, under mild restrictions. This monotonic departure from the manifold
is exploited in the discrete convergence analysis to follow. So, although, explicit
Runge–Kutta methods (including forward Euler) do not preserve quadratic invariants
(see [11, Chapter IV]), the forward Euler iterates for the one-sided systems remain
nearby. The reader is referred to [11, Chapter IV] for further information and refer-
ences, including the use of projection to remain on the quadratic manifold.

6.2. Discrete convergence theory. Just as the local drift from the manifold at
each iteration contributes to the global drift, so local truncation errors committed by
each step of an ODE solver aggregate into a global error. How does this accumulated
error affect convergence of the discrete method as we compute pj with j →∞? In this
section, we seek conditions that will ensure that the discrete preconditioned one-sided
iteration (6.2) converges to the same eigenvector as the continuous system.

Suppose A ∈ Rn×n has a simple eigenvalue λ1 strictly to the left of all other
eigenvalues (and hence real). Via a unitary transformation of coordinates, we write

A =
[
λ1 dT

0 C

]
(6.11)

Let x1 and y1 denote unit-length right and left eigenvectors associated with λ1; in
these coordinates we can take x1 = [1, 0, . . . , 0]T . Theorems 4.3, 4.4, and 5.1 provide
conditions under which the solution p(t) of the continuous system converges in angle
to the eigenvector x1 (e.g., if N = I and yT

1 p0 6= 0). Even when p0 satisfies such
conditions, the discrete iteration can deflate the desired eigenvector, at which point
convergence becomes impossible. One can write the iterate at step k + 1 as

pk+1 =
k∏

j=0

ϕj(A)p0
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for linear factors ϕj(z) = 1 + h(θj − z), with failure now equivalent to one of these
polynomials having λ1 as a root. Examples are simple to construct: for any fixed
h > 0, set

A =
[
0 −1− 2/h
0 1

]
, p0 =

[
1
1

]
,

so θ0 = −1/h, ϕ0(0) = 0 and p1 = [h+2,−h]T is an eigenvector for λ2 = 1. Note that
ϕj(λ1) = 1+h(θj−λ1) = 0 implies that θj−λ1 = −1/h < 0, and this is impossible if A
is normal. As h is reduced, complete deflation requires an increasing departure from
normality. (The more sophisticated restarted Arnoldi algorithm exhibits a similar
phenomenon; see [7].)

Under what circumstances can we guarantee convergence? To answer this ques-
tion, we first review the conventional global error analysis for the forward Euler
method; for details, see, e.g., [8, §1.3]. The first step begins with the exact solu-
tion at time t = 0: p0 = p(0). Each subsequent step introduces a local truncation
error, while also magnifying the global error aggregated at previous steps. Suppose
we wish to integrate for t ∈ [0, τ ] with τ = kh for some integer k. With the local
truncation error at each step is bounded by

Th := max
0≤t≤τ

1
2h‖p̈(t)‖,

one can show that

‖pk − p(τ)‖ ≤ Th

L

(
eτL − 1

)
, (6.12)

where L is a Lipschitz constant for our differential equation; in Appendix A we show
that L = 10‖N−1‖‖A‖ will suffice. This expression for the global error captures an
essential feature: for fixed τ , the fact that Th = O(h) implies that we can always
select h > 0 sufficiently small as to make the difference between the forward Euler
iterate pτ/h and the exact solution p(τ) arbitrarily small. However, if we increase k
with h > 0 fixed, the bound indicates an exponential growth in the error. To show
that pk converges (in angle) to an eigenvector as k →∞, further work is required. In
this effort, the preservation of the quadratic invariant characterized in Theorem 6.2
plays an essential role.

Preconditioning significantly complicates the convergence theory. For simplicity,
our analysis imposes the stringent requirement that, in the coordinates in which A
takes the form (6.11), we have

N−1 =
[
η 0
0 M

]
(6.13)

in addition to the requirement that N−1 be symmetric and positive definite. The triv-
ial off-diagonal blocks prevent the preconditioner from using the growing component
of pk in x1 to enlarge the component in the unwanted eigenspace. In what follows,
κ(N) = ‖N‖‖N−1‖ denotes the condition number of the preconditioner.

Theorem 6.3. Given (6.11), (6.13), and assumptions on λ1, x1, and N estab-
lished in the previous paragraphs, suppose that p0 is chosen so that the continuous
dynamical system converges in angle to an eigenvector associated with the distinct,
simple leftmost eigenvalue λ1 (e.g., yT

1 p0 6= 0 suffices if N = I). Furthermore, sup-
pose there exists h > 0 for which

γ := ‖I + hM(λ1 −C)‖ ∈ [0, 1/
√

κ(N)). (6.14)
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Then after preliminary iteration with a sufficiently small time-step h0, the forward
Euler method with time-step h will converge (in angle) to the desired eigenvector:

sin(∠(pk,x1)) = O(γk). (6.15)

Asymptotically, the Ritz value converges to λ at the same rate:

|θk − λ| = O(γk), (6.16)

which in the case d = 0 improves to |θk − λ| = O(γ2k).
Proof. Denote the kth iterate by

pk =
[
αk

bk

]
.

To show that sin(∠(pk,x1)) → 0 as k → ∞, we will show that ‖bk‖ → 0 while |αk|
is bounded away from zero. The convergence of the forward Euler method at a fixed
time τ ≥ 0, with the assumption the continuous system converges for the given p0 (as
described in Sections 4–5), ensures that we can run the forward Euler iteration with a
sufficiently small time-step that, after k ≥ 0 iterations, ‖bk‖ is sufficiently small that

‖bk‖2‖λ1 −C‖
α2

k + ‖bk‖2
+

‖bk‖‖d‖√
α2

k + ‖bk‖2
≤ ε

h‖M‖
(6.17)

for some ε ∈ [0, 1/
√

κ(N) − γ); here γ ∈ [0, 1/
√

κ(N)) and h > 0 are as in the
statement of the theorem. Theorem 6.2 and the fact that N is symmetric positive
definite imply that

‖pk‖2 ≥
1

‖N‖
pT

k Npk ≥ 1
‖N‖

pT
k−1Npk−1 ≥

1
κ(N)

‖pk−1‖2, (6.18)

so |αk| must be bounded away from zero as ‖bk‖ → 0. Since

θk =
λ1α

2
k + αkdT bk + bT

k Cbk

α2
k + ‖bk‖2

,

we have

|θk − λ1| =
|λ1α

2
k + αkdT bk + bT

k Cbk − λ1(α2
k + bT

k bk)|
α2

k + ‖bk‖2

≤ |bT
k (C− λ1)bk|
α2

k + ‖bk‖2
+
|αk|‖bk‖‖d‖
α2

k + ‖bk‖2

≤ ‖bk‖2 ‖C− λ1‖
α2

k + ‖bk‖2
+

‖bk‖‖d‖√
α2

k + ‖bk‖2
, (6.19)

where the last inequality uses the fact that |αk| ≤
√

α2
k + ‖bk‖2. Now the condi-

tion (6.17) implies that the Ritz value θk is sufficiently close to the eigenvalue λ1:

|θk − λ1| ≤
ε

h‖M‖
. (6.20)
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The next step of the iteration, with time-step h > 0 specified in the statement of the
theorem, produces[

αk+1

bk+1

]
= pk+1 = pk + hN−1(θk −A)pk =

[
αk + ηh((θk − λ1)αk − dT bk)

(I + hM(θk −C))bk

]
.

Adding zero in a convenient way gives

‖bk+1‖ = ‖(I + hM(λ1 −C))bk + h(θk − λ1)Mbk‖

≤ ‖I + hM(λ1 −C)‖‖bk‖+ h|λ1 − θk|‖M‖‖bk‖

≤ (γ + ε)‖bk‖. (6.21)

In particular, this guarantees a fixed reduction in the component of the forward Eu-
ler iterate in the unwanted eigenspace. (The second inequality follows from condi-
tion (6.14) and bound (6.20).) After checking a few details, we shall see that this
condition is the key to convergence.

We now show that the new Ritz value, θk+1, automatically satisfies the require-
ment (6.20) with the same ε > 0 and time-step. Repeating the calculation that
culminated in (6.19), we obtain

|θk+1 − λ1| ≤
‖bk+1‖2 ‖C− λ1‖
α2

k+1 + ‖bk+1‖2
+

‖d‖‖bk+1‖√
α2

k+1 + ‖bk+1‖2
.

Now we use (6.18), a consequence of the monotonic drift from the invariant manifold,
to deduce that

|θk+1 − λ1| ≤
κ(N)(γ + ε)2‖bk‖2 ‖C− λ1‖

α2
k + ‖bk‖2

+

√
κ(N)(γ + ε)‖d‖‖bk‖√

α2
k + ‖bk‖2

≤ ‖bk‖2 ‖C− λ1‖
α2

k + ‖bk‖2
+

‖d‖‖bk‖√
α2

k + ‖bk‖2
,

since γ + ε < 1/
√

κ(N). The condition (6.17) then implies that

|θk+1 − λ1| ≤
ε

h‖M‖
,

which guarantees that the Ritz value cannot wander too far from λ1. Furthermore,
this bound allows us to repeat the argument resulting in (6.21) at future steps, giving

‖bk+m‖ ≤ (γ + ε)m‖bk‖

along with, via a slight modification of (6.18),

|θk+m − λ1| ≤
κ(N)(γ + ε)2m‖bk‖2 ‖C− λ1‖

α2
k + ‖bk‖2

+

√
κ(N)(γ + ε)m‖d‖‖bk‖√

α2
k + ‖bk‖2

(6.22)

≤ ‖bk‖2 ‖C− λ1‖
α2

k + ‖bk‖2
+

‖d‖‖bk‖√
α2

k + ‖bk‖2
.
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Thus |θk+m − λ1| ≤ ε/(h‖M‖) for all m ≥ 1. As ‖bk+m‖ → 0, the component in
the desired eigenvector is bounded away from zero, as again a generalization of (6.18)
gives

‖pk+m‖ ≥
1√

κ(N)
‖p0‖.

Thus with x1 = e1, we have

sin∠(pk+m,x1) = min
ξ

‖ξpk+m − x1‖
‖x1‖

= min
ξ

∥∥∥∥ [
ξαk+m − 1

ξbk+m

] ∥∥∥∥
≤ ‖bk+m‖

|αk+m|
≤ (γ + ε)m ‖bk‖

|αk+m|

where we have taken ξ = α−1
k+m for the first inequality. As |αk+m| is bounded away

from zero, we have sin∠(pk+m,x1) = O((γ + ε)m) as m → ∞. Since ‖bk+m‖ → 0
as m → ∞, we can take the ε used in (6.19) to be arbitrarily small as the iterations
progress, giving the asymptotic rate given in (6.15). Similarly, from (6.22) we observe
that the Ritz value converges as in (6.16). The O(γm) term in that bound falls out if
d = 0.

We now make several remarks concerning the previous theorem and its proof.
(1) Given the special form of A and N, the constant γ defined in (6.14) can be
written in the more general form

γ = ‖Π1(I + hN(λ1 −A)‖,

where Π1 = I − x1x
T
1 is the orthogonal projector onto the undesired invariant sub-

space. (2) The condition (6.14) implies that as N gets increasingly ill-conditioned,
our convergence theory requires it to become ever more effective. (3) A curiosity of
condition (6.17) is that the requirement is more strict when convergence is slower, i.e.,
when γ is near κ(N)−1/2. (4) One does not in general know whether θk falls to the
left or right of λ1. If A is normal, then as θk must fall the convex hull of its spectrum,
and so θk ≥ λ1; for nonnormal A, it is possible that θk < λ1. (5) The proof of the
theorem exploits the monotonic drift from the manifold described by Theorem 6.2.
This drift is easily monitored, so providing a useful (and cheap) check on convergence
of the iteration during computation. If this drift reaches a point where it is not small,
projection to the quadratic manifold is easily undertaken; see [11, Chapter IV] for
further information.

Theorem 6.3 considers the general case of nonsymmetric A and a somewhat strin-
gent notion of preconditioning. For the important special case of symmetric positive
definite A, Knyazev and Neymeyr [16] provide convergence estimates (and review
much literature) for the one-sided forward Euler discretization (6.3). They provide
rates of convergence given a symmetric positive definite preconditioner N for A. How-
ever, a connection with dynamical systems is not made and instead optimization is
applied to the Rayleigh quotient.

If M = I, and C is normal (which is possible even if A itself is not normal due
to d 6= 0) with spectrum given by σ(C) = {λ2, . . . , λn}, we have

γ := max
i=2,...,n

|1 + h(λ1 − λi)|,

and we can apply the equioscillation theorem to determine the optimal h > 0. In
particular, if all the eigenvalues are real (thus C is symmetric) and λ2 ≤ λ3 ≤ · · · ≤ λn,
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then the best h must give

1 + h(λ1 − λ2) = −1− h(λ1 − λn).

This can be solved to obtain h = 2/(λ2 + λn − 2λ1), from which we compute

γ =
λn − λ2

λn + λ2 − 2λ1
.

Notice that this agrees with the convergence rate of the power method applied to
A − σI for the optimal shift σ = 1

2 (λ2 + λn) to the leftmost eigenvector x1; see,
e.g., [32, p. 572]. With the optimal choice of h, the forward Euler method recovers
the convergence rate of an optimally shifted power method to x1.

Again, suppose that M = I, so that γ = γ(h) → 1 as h → 0. However, this
limit need not be approached from below; that is, for some matrices C we will have
γ(h) > 1 for all h sufficiently small. The behavior of γ in this limit bears a close
connection to the logarithmic norm of λ1 −C, which is defined as

β(λ1 −C) := lim
h↓0

‖I + h(λ1 −C)‖ − 1
h

;

see, e.g., [20],[29, Chap. 17]. In particular, γ(h) < 1 for all sufficiently small h > 0
provided β(λ1 − C) < 0. One can show that the logarithmic norm of a matrix
coincides with the numerical abscissa, that is, the real part of the rightmost point in
the numerical range:

β(λ1 −C) = max
v∈Cn−1,‖v‖=1

Re v∗(λ1 −C)v

= max{η : η ∈ σ( 1
2 ((λ1 −C) + (λ1 −CT ))},

see, e.g., [29, Theorem 17.4]. When is γ(h) > 1? That is, for what matrices can we
not apply our convergence theory by taking h arbitrarily small? It is equivalent to
find requirements on C that ensure β(λ1 −C) < 0. From the above analysis we see
that

β(λ1 −C) = λ1 − min
v∈Cn−1,‖v=1‖

Re v∗Cv,

from which we conclude the following.
Lemma 6.4. The logarithmic norm β(λ1 − C) < 0 (equivalently, γ < 1 for all

sufficiently small h > 0) if and only if the numerical range of C does not include λ1.

6.3. Numerical experiments. In this section we investigate the Theorems 6.1
and 6.3 through several computational examples.

Figure 6.1 samples the flow in h-intervals given by Theorem 4.1 for the tridiagonal
matrix

Tn
ρ ≡


2 −1 + ρ 0

−1− ρ 2
. . .

. . . . . . −1 + ρ
0 −1− ρ 2

 ∈ Rn×n
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(c) ‖fj‖ and ‖gj‖, h = 10−3
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Fig. 6.1. Sampled flow for T100
ρ where ρ = 1/(20 · 101) over two time intervals. The horizontal

axis measures time.

where n = 100 and ρ = 1/(20(n + 1). The eigenvalues are all real and the condition
number of the matrix of eigenvectors is modest. The experiments of Figure 6.1 use
the same starting vectors.

Figure 6.1(a),(b) show that at t ≈ .067, a cusp develops indicating that a pole as
given by π(t) of Theorem 4.1 is encountered by the discrete flow. Figure 6.1(c),(d)
displays the discrete flow associated with a forward Euler time integrator with a time
step of h = 10−3. As expected, when the iterates depart from the quadratic manifold,
the residuals explode in size. One can also show that the secant of the angle between
pj and qj , and the norms of pj and qj also explode, demonstrating that Theorem 6.1
is descriptive.

Decreasing the time-step h does not avoid the error—in fact, the time at which
the explosive growth occurs is independent of the time-step because of the onset of
incurable breakdown associated with the continuous dynamical system. In contrast to
the latter, the discrete dynamical system cannot simply step over the pole associated
with continuous dynamical system. The special case of Theorem 4.2 aside, these
results are typical and do not depend on specially engineered starting vectors. We
also implemented the symplectic Euler method (that preserves quadratic invariants)
and forward Euler combined with a projection. The results obtained are consistent
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Fig. 6.2. Computational confirmation of Theorem 6.3 for a normal matrix (left) and a non-
normal matrix (right), both with N = I.

with forward Euler (as displayed in Figure 6.1)(c),(d). In contrast, the one-sided
discretized forward Euler iterations converge to the left eigenvalue and associated
eigenvector.

Next we investigate the convergence analysis described in Theorem 6.3 for a simple
example with N = I. Let A be the matrix with aj,j = (j − 1)/(N − 1) for j =
1, . . . , N , and all other entries equal to zero except perhaps for the vector dT in
entries 2 through N of the first row; cf. (6.11). The plots in Figure 6.2 use N = 64,
comparing dT = 0 (left) and dT = [1, . . . , 1] (right). In both cases we take h = 1/2,
for which (6.14) gives γ = 0.992 . . . ∈ [0, 1) as required. We take p0 to be the
same randomly-generated unit vector in both cases. This initial vector does not
satisfy (6.17), but this condition is eventually met after a number of iterations, denoted
by the vertical line in each plot. For the normal case in the left plot, ‖bk‖ converges
like γk, while the error in the Ritz value |θk − λ1| converges like γ2k as predicted.
The nonnormality induced by the d vector spoils this convergence for the Ritz value,
as seen in the right plot; now both ‖bk‖ and |θk − λ1| converge like γk, consistent
with Theorem 6.3. The spikes in the latter plot correspond to points where the Ritz
value θk crossed over the desired eigenvalue λ1, something only possible for nonnormal
iterations.

7. Summary. This paper demonstrates the fruitful relationship between several
nonlinear dynamical systems and certain simple preconditioned eigensolvers for non-
symmetric eigenvalue problems. Properties of the continuous-time systems, such as
system invariants and the asymptotic behavior of the exact solution, can inform the
convergence theory for practical algorithms derived from discretizations, as we illus-
trate with Theorem 6.1 for the forward Euler discretization. Generalizations to more
sophisticated discretizations, along with relaxation of the stringent requirements on
the preconditioner in Theorem 6.1, are natural avenues for future research.
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Appendix A. Lipschitz constant for Euler’s method. To apply the stan-
dard convergence theory for the forward Euler method applied to the system

ṗ = N−1(θ(p)p−Ap),
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we seek a constant L > 0 such that

‖N−1(θ(u)u−Au)−N−1(θ(v)v −Av)‖ ≤ L‖u− v‖

for all u,v ∈ Rn. First we note that

‖(θ(u)u−Au)− (θ(v)v −Av)‖ ≤ ‖θ(u)u− θ(v)v‖+ ‖A‖‖u− v‖.

We focus attention on the first term on the right:

‖θ(u)u− θ(v)v‖ ≤ ‖θ(u)u− θ(v)u + θ(v)u− θ(v)v‖

≤ |θ(u)− θ(v)|‖u‖+ |θ(v)|‖u− v‖

≤ |θ(u)− θ(v)|‖u‖+ ‖A‖‖u− v‖. (A.1)

(In this last inequality and others that follow, we neglect the opportunity to take
tighter bounds that would lead to smaller constants but greater analytical complexity.)

We next we need to bound |θ(u)− θ(v)|‖u‖ in terms of ‖u−v‖. For convenience
(assuming neither u nor v is zero), define the unit vectors û = u/‖u‖ and v̂ = v/‖v‖,
with ε = v̂ − û, so that

|θ(u)− θ(v)| = |ûTAû− v̂TAv̂|

= |ûTAû− ûTAû− εTAû− ûTAε + εTAε|

≤ 2‖ε‖‖A‖+ ‖ε‖2‖A‖. (A.2)

Now note that

‖ε‖ = ‖v̂ − û‖ =

∥∥∥‖u‖v − ‖v‖v + ‖v‖v − ‖v‖u
∥∥∥

‖u‖‖v‖
≤

∣∣∣‖u‖ − ‖v‖∣∣∣
‖u‖

+
‖u− v‖
‖u‖

.

Apply the triangle inequality to obtain
∣∣∣‖u‖−‖v‖∣∣∣ ≤ ‖u−v‖, from which we conclude

‖ε‖ ≤ 2
‖u‖

‖u− v‖. (A.3)

Since û and v̂ are unit vectors, we alternatively have the coarse bound ‖ε‖ = ‖û−v̂‖ ≤
2, which we can apply to (A.2) to obtain

|θ(u)− θ(v)| ≤ 2‖ε‖‖A‖+ ‖ε‖2‖A‖

≤ 2‖ε‖‖A‖+ 2‖ε‖‖A‖ = 4‖A‖‖ε‖.

Now using (A.3), the bound first bound on ‖ε‖,

|θ(u)− θ(v)| ≤ 8
‖A‖
‖u‖

‖u− v‖.

Substituting this bound into (A.1) gives

‖θ(u)u− θ(v)v‖ ≤ 9‖A‖‖u− v‖,
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and finally we arrive at the Lipschitz constant

‖N−1(θ(u)u−Au)−N−1(θ(v)v −Av)‖ ≤ 10‖N−1‖‖A‖‖u− v‖.

Thus we define

L = 10‖N−1‖‖A‖. (A.4)

The Rayleigh quotient θ(p) is undefined in the case that p = 0. However, as
‖p‖ → 0, we have that ‖θ(p)p − Ap‖ → 0, and this motivates the definition that
θ(p)p−Ap = 0 if p = 0.

The above analysis excludes the case that u = 0 and/or v = 0, but with our
definition of this singular case we have, e.g., if u = 0, that

‖(θ(u)u−Au)− (θ(v)v −Av)‖ = ‖θ(v)v −Av)‖ ≤ 2‖A‖‖v‖ ≤ 10‖A‖‖u− v‖,

and obviously if u = v = 0, we have

‖θ(u)u−Au)− (θ(v)v −Av)‖ = 0 = 10‖A‖‖u− v‖.

Hence, the Lipschitz constant (A.4) holds for all u and v.
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